Design and Implementation for Controlling Multiple Robotic Systems by a Single Operator under Random Communication Delays
نویسنده
چکیده
Multiple robots can be tele-operated by a single operator to accomplish complicated tasks such as formation and co-transportation. Such systems are challenging because one operator needs to simultaneously tele-control multiple homogeneous and even heterogeneous robots. Besides, the communication between the operator and multi-robot system and the communication among the multiple robots are always subject to some communication constraints such as time delays. This chapter introduces a novel non-time based method to realize the single-operator-multi-robot (SOMR) teleoperation system with random communication delays. The problem is divided into a typical teleoperation problem and a multi-robot coordination problem. A non-time variable is taken as the system reference instead of the time to model and drive the system such that the random communication delays and some expected events could be automatically handled. Experiments implemented on a multi-robot system illustrate the effectiveness and advantages of the method.
منابع مشابه
Modelling and Compensation of uncertain time-delays in networked control systems with plant uncertainty using an Improved RMPC Method
Control systems with digital communication between sensors, controllers and actuators are called as Networked Control Systems (NCSs). In general, NCSs encounter with some problems such as packet dropouts and network induced delays. When plant uncertainty is added to the aforementioned problems, the design of the robust controller that is able to guarantee the stability, becomes more complex. In...
متن کاملCONTROL OF FLEXIBLE JOINT ROBOT MANIPULATORS BY COMPENSATING FLEXIBILITY
A flexible-joint robot manipulator is a complex system because it is nonlinear, multivariable, highly coupled along with joint flexibility and uncertainty. To overcome flexibility, several methods have been proposed based on flexible model. This paper presents a novel method for controlling flexible-joint robot manipulators. A novel control law is presented by compensating flexibility to form a...
متن کاملDynamics and Motion Control of Wheeled Robotic Systems
Mobile robotic systems, which include a mobile platform with one or more manipulators, mounted at specific locations on the mobile base, are of great interest in a number of applications. In this paper, after thorough kinematic studies on the platform and manipulator motions, a systematic methodology will be presented to obtain the dynamic equations for such systems without violating the base n...
متن کاملDynamics and Motion Control of Wheeled Robotic Systems
Mobile robotic systems, which include a mobile platform with one or more manipulators, mounted at specific locations on the mobile base, are of great interest in a number of applications. In this paper, after thorough kinematic studies on the platform and manipulator motions, a systematic methodology will be presented to obtain the dynamic equations for such systems without violating the base n...
متن کاملExponential Stability of Linear Systems with Multiple Time Delays
In this paper, a class of linear systems with multiple time delays is studied. The problem of exponential stability of time-delay systems has been investigated by using Lyapunov functional method. We will convert the system of multiple time delays into a single time delay system and show that if the old system is stable then the new one is so. Then we investigate the stability of converted new ...
متن کامل